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Abstract Experiments conducted on Uranium Dioxide (UO2) under the Manhattan Project led to 

the creation of the first self-sustaining nuclear reaction at Chicago-Pile 1 in 1942. Eighty years 

later, UO2 functions as the primary fuel for nuclear fission reactors, providing around 10% of 

global electric output [1]. The importance of understanding UO2‘s thermal and magnetic 

properties is instrumental in ensuring safe operation and handling, which can be done 

computationally using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). 

Simulating spin-lattice coupling with LAMMPS requires the usage of magneto-mechanical 

potentials instead of classical potentials, which captures more of the relevant quantum-

mechanical physics that is dominant in low-temperature magnetic subsystems. UO2 at low 

temperatures contains a non-trivial magnetic subsystem which is believed to be a result of 

quadrupole-quadrupole, magnetic exchange, and phonon-magnon interactions. We discuss 

progress made with simulating the magnetic subsystem of elemental Iron and possible 

applications to the technologically important material, UO2. 

Introduction UO2 as it exists in nature is a black semiconducting powder, which has unusual 

thermal properties that have been the topic of studies conducted since the 1960s [2]. The typical 

nuclear fuel rod used in a fission reactor consists of a stack of small sintered UO2 pellets with 

Zirconium metal cladding to resist heat and chemical damage. The thermal conductivity of the 

dense UO2 solid decreases as the metal’s temperature rises, contrasting with the conductivity of 

the Zirconium cladding which increases as its temperature rises. Achieving a proper balance with 

these two materials is difficult, and for many reactor applications, particularly designs that NASA 

produces, Uranium Nitride (UN) is utilized for its superior thermal conductivity properties and 

higher melting point. Consistent efforts are being invested into increasing the thermal 

conduction of nuclear fuel via the usage of dopants due to their effect on the efficiency of heating 

up reactor baths [3].  

The thermal conductivity of the cubic fluorite structure of molecular UO2 is described 

using Fourier’s Law, 𝐽𝓏 = −𝑘𝓏
𝑑𝑇

𝑑𝓏
 , where 𝐽𝓏 represents heat flux, 𝑘𝓏 represents the thermal 

conduction coefficient, and  
𝑑𝑇

𝑑𝓏
 represents thermal gradient, and 𝓏 represents the 

crystallographic direction. A past study conducted by A. Lonsdale verified the isotropic nature of 

UO2 in the 300 Kelvin regime using LAMMPS classical potentials [4]. Below 300 Kelvin, quantum-

mechanical effects begin to significantly impact the thermal properties of UO2, especially as the 

magnetic phase shift from paramagnetism to antiferromagnetism occurs below the Neél point 

of 30.8 Kelvin. To include the effect of magnetism on the thermal properties of UO2, magneto-

mechanical potentials must be used in MD simulations over the temperature range of 50-1000 

Kelvin. Magneto-mechanical potentials are currently unavailable for UO2; therefore, we 

investigate this effect in elemental iron. This study elucidates the magnitude and effects of 

magnetic spin substructures on the thermal conductivity of elemental iron, with the possible 

application to the UO2 regime. 
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Methods Spin Dynamics (SD) simulations which involved the usage of the direct method were 

used to calculate lattice thermal conductivity for Iron [5]. The SPIN package, developed in 2018 by 

Tranchida et al. [6], utilizes a coupled spin-lattice approach to generate a molecular lattice 

structure of the Iron system with greater accuracy than using standard short-range MD code. 

Mishin’s 2006 Interatomic potentials including exchange interaction used for the Iron system and 

were sourced from the LAMMPS Interatomic Potential Database [7], [8], [9]. These potentials 

accurately reproduce the lattice properties for both the BCC and high-temperature FCC phases 

of the metal and capture the relevant phonon interactions present at low temperatures. 

A constant heat flow of 1 eV/ps was imposed in a rectangular cuboid simulation cell by 

conducting thermal energy from hot and cold plates separated by one-half of the simulation cell 

length. The thickness of one bcc 𝐹𝑒 unit cell measures 2.867 Å. Periodic boundary conditions 

were applied to the simulation cell. The size of the time step was 1.0 fs in all simulations. 

Equilibration of thermal and strain properties of the systems was achieved by performing 

constant temperature (NVE) and constant pressure (NPT) simulations for 300ps. The data 

acquisition period for the heat flow was 600-10,000 ps. The heat flux of the system was averaged 

over the data acquisition period and was used to calculate the lattice thermal conductivity via 

Fourier’s Law. 

The length of the simulation cells ranged from 40 to 320nm along the <100> 

crystallographic direction. Results for infinite cell length was obtained by the extrapolation of  
1

𝜅
=

1

𝜅∞
+

1

𝐿𝑧
, where 𝐿𝑧 is the length of the simulation and 𝜅∞ is the thermal conductivity for a 

simulation cell of infinite length. In the direction parallel to the thermal current, the height and 

width of the simulation cell is 28.67 Å. Four different systems were measured, exchange-

disabled, positive exchange interaction (ferromagnetic), positive exchange interaction at one-

third strength, and negative exchange interaction (antiferromagnetic). Systems with lattice 

temperatures ranging from 50-1000 Kelvin were measured. The inter-atomic forces between iron 

atoms were described by short-range exchange interaction forces calculated using the embedded 

atom method. Possible anisotropy of the thermal conductivity tensor for all iron systems was not 

considered. 

Pairwise interactions, otherwise referred to as magneto-mechanical potentials, for the 

Iron metal were computed using the embedded-atom method (EAM) with the total energy of an 

arbitrary atom given by the following expression: 

𝐸𝑖 = 𝐹𝛼 (∑𝜌𝛽(𝑟𝑖𝑗)

𝑗≠𝑖

) +
1

2
∑𝜙𝛼𝛽(𝑟𝑖𝑗)

𝑗≠𝑖

(1) 

where 𝐹𝛼is the embedding energy, which is a function of the atomic electron density, rho, phi is 

the pair interaction energy and alpha and beta are the element types of atoms I and J [10]. Both 

summations in the formula are computed over all neighbors J of atom I within a specified cutoff 
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distance, which is 1.841 Å in this study. For the Iron system, the formula reduces to simply the 

atomic electron density summation. Application to the UO2 system requires the specification of 

three functions, 𝜙(𝑟), 𝜌(𝑟) and 𝐹(𝜌), which are dependent on understanding the complex 

quadrupole-quadrupole, spin-exchange, and phonon-magnon (lattice vibration) interactions, 

which cannot currently be handled automatically by LAMMPS. 

Generation of the iron lattice structure using the LAMMPS SPIN package was performed 

by computation of the coupled spin-lattice Hamiltonian as shown: 

𝑯𝒔𝒍 =∑
|𝒑𝒊|

2

2𝑚𝑖

𝑁

𝑖=1

+ ∑ 𝑉(𝑟𝑖𝑗)

𝑁

𝑖,𝑗=1⏟              

− ∑ 𝐽(𝑟𝑖𝑗) 𝑠𝑖 ∗ 𝑠𝑗

𝑁

𝑖,𝑗,𝑖≠𝑗

− 𝜇𝐵𝜇0∑𝑔𝑖𝑠𝑖

𝑁

𝑖=0

∗ 𝑯𝑒𝑥𝑡 

⏟                          

(2) 

𝑀𝐷 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛                           𝑆𝑝𝑖𝑛 − 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 

where terms one and two in the RHS of Eq. 1 represent the classical potential energies resulting 

from atomic momentum and coulombic long and short-ranged interactions, respectively. Term 

three in Eq. 2 represents the spin-exchange interaction, responsible for the local alignment of 

neighboring atomic spins which produces ferromagnetism and antiferromagnetism, among other 

magnetic phases. Term four, the Zeeman term, represents any influences from external magnetic 

fields on atomic magnetic spins, of which a field strength of 1 Tesla was used for this study to 

align spins at timestep 0. 

 The spin-exchange interaction term present in Eq. 2 is by far the most dominant quantum-

mechanical effect present in low-temperature iron lattices and is also relevant in the low-

temperature UO2 system. The exchange interaction is defined between pairs of magnetic spins 

as the following summation of pairs of nearest neighbors: 

𝑯𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = − ∑ 𝐽(𝑟𝑖𝑗) 𝑠𝑖 ∗ 𝑠𝑗

𝑁

𝑖,𝑗,𝑖≠𝑗

(3) 

where the neighboring magnetic spin moments of atoms 𝑖 and 𝑗 are represented as unit vectors 

and 𝑠𝑗, and 𝑟𝑖𝑗 = |𝑟𝑖 − 𝑟𝑗| is the interatomic distance between these two atoms. The Heisenberg 

exchange coupling function, 𝐽(𝑟𝑖𝑗), defines the magnitude and the sign of the spin-exchange 

interaction for different neighboring shells, with a negative term simulating antiferromagnetism 

and a positive term simulating ferromagnetism. It is important to note that 𝐽(𝑟𝑖𝑗) is dependent 

on interatomic distance, and is generally a radial function, so no anisotropic effect can be 
modelled using this method. From the exchange interaction defined in Eq. 3, each spin 𝑖 will be 

submitted to a magnetic torque 𝜔⃗⃗⃗𝑖 and its associated atom can be submitted to a force 𝐹⃗𝑖  for 
spin-lattice calculations such as the following: 

𝜔⃗⃗⃗𝑖 =
1

ℏ
∑ 𝐽(𝑟𝑖𝑗) 𝑠𝑗

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑗

 𝑎𝑛𝑑 𝐹⃗𝑖 = ∑
𝜕𝐽(𝑟𝑖𝑗)

𝜕𝑟𝑖𝑗
(𝑠𝑖 ∗ 𝑠𝑗

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑗

) 𝑒𝑖𝑗 (4) 
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where ℏ is Planck’s constant and 𝑒𝑖𝑗 =
𝑟𝑖−𝑟𝑗

|𝑟𝑖−𝑟𝑗|
 is the unit vector between neighboring sites 𝑖 and 

𝑗.  

LAMMPS simulations using the exchange interaction consist of an iterative three-step 
integration algorithm when calculating the motion of each individual atom in the molecular 
lattice structure. Operation one applies a precession torque to each magnetic spin in the group, 
which is determined by the Zeeman term in the RHS of Eq. 2. Operation two accounts for 
temperature effects from operation one by connecting every atomic spin to a thermal bath with 
the usage of a Langevin thermostat. This operation performs Brownian dynamics (BD) where a 
random torque and a transverse dissipation are applied to each spin according to the stochastic 
Landau-Lifshitz-Gilbert equation. Operation three performs a symplectic integration with a 
micro-canonical ensemble (NVE) for the spin-lattice system which accounts for motion effects. A 
“moving” lattice was used for the integration of the spins over both spin and atomic degrees of 
freedom to capture the spin-lattice coupling of iron. 

Magnetization data was retrieved from all simulations and followed expected magnetic 
phase behavior, displaying proper ferromagnetic, antiferromagnetic, and paramagnetic spin 
structures as the systems approached the Curie point of iron. Phase transitions occurred at their 
respective temperatures as determined by the spin-exchange interactions. 

Results The magnetic phases as shown in Fig. 1 reflect accurately the expected magnetic phases 
for a molecular iron lattice, with the underlying magnetic subsystem behaving appropriately. The 
magnetic subsystem results give us higher confidence in the accuracy of the thermal transport 
measurements for the iron systems. 

   

Figure 1 | Normalized Magnetic Moments for Ferromagnetic Systems. The magnitude of the 
magnetic moments from the two important ferromagnetic systems is shown, with the magnetic 
moment of the antiferromagnetic system near zero for all temperatures. (a) Inset shows the Curie 
point reached around 200 Kelvin for the one-third strength exchange interaction with 
ferromagnetic behavior transitioning to paramagnetic behavior for the iron system. (b) Inset 
shows the Curie point of around 800 Kelvin for the regular iron system with a full-strength 
exchange interaction. 

a b 
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Figure 2 | Structure of Magnetic Subsystems. Magnetic spin vectors on each atom are shown in 
a side profile view of the iron molecular lattice. (a) Inset shows a parallel orientation of atomic 
magnetic spins consistent with ferromagnetic phase. (b) Inset shows the anti-parallel orientation 
of atomic magnetic spins consistent with antiferromagnetic phase. (c) Inset shows random 
orientations of atomic magnetic spins at a high temperature consistent with paramagnetic phase. 
 

Several non-trivial and unique effects are on display as we look at the overall data for the 
Lattice Thermal Conductivity. The magnitude of the thermal conductivity is largest for the full-
strength ferromagnetic system, with the one-third strength system being slightly lower. The anti-
ferromagnetic system appears to have a reduced thermal conductivity, the reason for which may 
be because of heat energy being dissipated due to the anti-alignment of magnetic spins, which 
impedes phonon and magnon transport through the molecular lattice. The magnitude of the 
thermal conductivity change approaches a minimum as the lattices reach their respective Curie 
points and the magnetic substructure becomes disordered. 

 

 
 

Figure 3 | Effect of Magnetic Subsystem on Lattice Thermal Conductivity. Magnetized systems 
are plotted with respect to thermal conductivity at discrete temperatures, extrapolated to 

a b 

b 

c 

a 
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infinite system length. (a) Inset shows convergence as each system reaches their respective Curie 
point. (b) Inset shows enhanced resolution and significant dependence of magnetization at 
temperatures below 400 Kelvin. The magnitude of thermal conductivity is minimally affected for 
the one-third strength ferromagnetic system, approximately 13% larger for the ferromagnetic 
system on average, and approximately 0.7% smaller for the antiferromagnetic system on 
average. 

Discussion The Spin-Lattice coupling approach captures more of the relevant physics surrounding 
thermal interactions in low-temperature molecular systems. The energy transferred from 
ballistic conduction, and the momentum carried by atomic magnetic spins in the system can 
theoretically be separated and the thermal conductivity of each component may be elucidated 
and calculated, however, this was not done for our study. Our results show a clear interaction 
between the magnetic subsystems and the thermal transport properties of Iron. The average 
error associated with the system size extrapolation for each temperature was reported as 1.62% 
for the spin-disabled system, 1.72% for the full-strength positive exchange interaction 
(ferromagnetic) system, 1.09% for the one-third strength positive exchange interaction 
(ferromagnetic) system, and 1.56% for the negative exchange interaction (antiferromagnetic) 
system. 

Ab Initio methods must be applied to the UO2 system to determine the effect of magnetism on 
thermal conductivity, as a proper definition of the magneto-mechanical potentials and low-
temperature magnetic subsystem behavior does not exist. Reproduction of the simulation of the 
iron systems for the UO2 system using the methodology laid out in this study can lead to a 
determination of the experimental question.  
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